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Abstract. We propose new classes of globally convexized filled functions. Unlike the globally
convexized filled functions previously proposed in literature, the ones proposed in this paper are
continuously differentiable and, under suitable assumptions, their unconstrained minimization
allows to escape from any local minima of the original objective function. Moreover we show that
the properties of the proposed functions can be extended to the case of box constrained
minimization problems. We also report the results of a preliminary numerical experience.
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1. Introduction

Several real world applications need the solution of global optimization problems.
However the definition of an efficient method for such problems is still an open
question. Many different approaches have been proposed in literature to solve this
class of difficult problems. One of these is based on the use of the filled functions.
These methods have been initially introduced in Ge (1990), Ge and Qin (1987,
1990), and recently reconsidered in Liu (2001).

The idea behind the filled functions is to construct an auxiliary function that
allows us to escape from a given local minimum x* of the original objective1

function f(x).
In this work we try to extend the approach proposed in Ge and Qin (1990), since,

in our opinion, the particular filled functions there introduced show interesting
theoretical properties. This class of filled functions U(x, x*, t, r) depends on the1

local minimum x* of f(x) and on two parameters, t, r . 0. If parameter r is chosen1

properly and x* is not a global minimum of the objective function f(x), then1

¯ ¯U(x, x*, t, r) has global minimum points x where f(x ), f(x*). Moreover if1 1

parameter t is greater than a threshold value, which depends on the behaviour of f(x)
ˆon a compact set V, then U(x, x*, t, r) has no unconstrained stationary points x [V1

ˆwhere f(x )> f(x*) except a prefixed point x . However the approach proposed in Ge1 0

and Qin (1990) has some drawbacks:

• the introduced filled functions are not smooth and therefore they are not easy to
minimize by using standard code;
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• the authors use, as compact set V, the level set of the original objective function
f(x) and this implies that a sequence of points produced by an unconstrained
algorithm may be attracted towards a stationary point of U(x, x*, A, h) out of V.1

This difficulty cannot be solved by a constrained minimization, because the
constrained stationary points of U(x, x*, A, h) have no connection with local1

minimum points of f(x).

Our first aim has been to define new classes of filled functions that overcome these
drawbacks, and then to extend our analysis to the case of box constrained
minimization problems.

More in particular, in Section 2 we define two new classes of filled functions for
unconstrained global optimization problems; in Section 3 we adapt these functions
for solving box constrained minimization problems. Finally in Section 4 we report
the result of a preliminary numerical experience showing the practicability of the
proposed approach.

In the sequel we will denote by ixi the standard Euclidean norm of x. In Ge and
Qin (1990) a function is called globally convex if it satisfies the following
definition:

nDEFINITION. A function f : R → R is globally convex if

lim f(x)51` .
ixi→1`

In literature a globally convex function is usually named a coercive function.

2. A class of continuously differentiable filled function for unconstrained
minimization problems

In this section we consider the following unconstrained minimization problem

min f(x)
(1)

nx [R
nwhere f : R → R is a smooth globally convex function.

Drawing inspiration from Ge and Qin (1990), we introduce two classes of filled
functions, whose expressions are obtained by combining two elementary functions,
h(t) and w(t). In order to guarantee theoretical properties of our classes of filled
functions, h(t) needs to satisfy the following properties:

(1) h(0)5 0
˜(2) h9(t)$ a . 0 per t . 0

Some examples of function h(t) satisfying properties (1) and (2) are the following:
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• h(t)5 t
• h(t)5 tan t

t• h(t)5 e 2 1

As regards the assumptions on w(t), they depend by the structure of the filled
function. In particular w(t) needs to satisfy some of the following properties:

(1) w9(t)> 0 ;t [ [0, 1`) and w9(t). 0 ;t [ [2t , 0) with t . 0;1 1

(2) lim w9(t)5 0, lim tw9(t)5 0, that is w9(t) is monotonically decreas-t→1` t→1`

ing to 0 at least as fast as 1 /t;
(3a) w(0)5 0, lim w(t)5B . 0t→1`

(3b) w(0)5 0, lim w(t)5B > 0t→1`

(4) lim w(t)52`t→2`

(5) lim w0(t)5 0t→1`

Observation 1. Since w(0)5 0 and for property (1) w(t) is an increasing function,
we have w(t). 0 when t . 0 and w(t), 0 when t , 0.

In the sequel we introduce two classes of filled functions. In the first class we use
functions w(t) satisfying propeties (1), (2), (3a) and some examples are:

• w(t)5 arctan(t)
• w(t)5 t /(11 t)

The second class requires functions w(t) satisfying properties (1), (2), (3b), (4), (5)
and some examples are:

3• w(t)5minht, 0j
2t• w(t)5 12 e

The functions h(t) and w(t) play two different important roles in defining filled
functions:

• by setting t 5t[ f(x)2 f(x*)1r] in w(t), we obtain a term that, for sufficiently1

ˆ ˆlarge values of t, can filter stationary points x such that f(x ), f(x*); in fact in the1
nregion hx [R : f(x)> f(x*)j the behaviour of w(t[ f(x)2 f(x*)1r]) becomes1 1

nmore and more flat for increasing values of t ; while in the region hx [R :
f(x), f(x*)j we have that w(t[ f(x)2 f(x*)1r]), 0 and it has a ‘sufficient slop’;1 1

2 21 1
] ]• by setting t 5 ix 2 x i in h(t), we obtain a term h( ix 2 x i ) that is able to0 02 2

enforce the global convexity of filled functions and to guarantee a ‘sufficient slop’
in the region where w(t[ f(x)2 f(x*)1r]) is almost flat.1
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2.1. A CONTINUOUSLY DIFFERENTIABLE GLOBALLY CONVEXIZED FILLED FUNCTION

nGiven a x [R , a local minimum x* of problem (1) and two parameters, t > 1 and0 1

r . 0, we introduce the following new class of continuously differentiable filled
functions:

1 2]S DW(x, t, r)5h ix 2 x i w(t[ f(x)2 f(x*)1r]) .0 12

The gradient of W(x, t, r) is:

1 2]S D=W(x, t, r)5 (x 2 x )h9 ix 2 x i w(t[ f(x)2 f(x*)1r])0 0 12
1 2]S D1th ix 2 x i =f(x)w9(t[ f(x)2 f(x*)1r]) . (2)0 12

n˜For any x [R , we denote the level set of W(x, t, r) by

n˜ ˜+ (x, t, r)5 hx [R : W(x, t, r)<W(x, t, r)j .0

In the sequel of this subsection we suppose that the following conditions hold:

ASSUMPTION 2.1.
(i) h(t) satisfies properties (1) and (2);

(ii) w(t) satisfies properties (1), (2) and (3a);
(iii) r satisfies:

0,r , f(x*)2 f(x*) (3)1

where x* is a global minimizer of f(x).
˜First we state that W(x, t, r) is globally convex and this implies that the level set

˜ ˜+ (x, t, r) is compact. Moreover we prove that the sets + (x, t, r), for all t > 10 0

and for all r . 0 are contained in a compact set D.

THEOREM 1. For every t, r the function W(x, t, r) is globally convex and hence
˜the level set + (x, t, r) is compact.0

Furthermore there exists a compact set D such that

˜+ (x, t, r)#D (4)0

for all t > 1 and r . 0.

Proof. First we consider the global convexity of the function. Since f(x) →` when
ixi→`, then even f(x)2 f(x*)1r →1` when ixi→`; it follows from the1

properties of w(t) that lim w(t[ f(x)2 f(x*)1r])5B . 0. Moreover we haveixi→1` 1

from the properties of h(t):

t t

˜ ˜h(t)5E h9(s) ds >E a ds5 at →1` when t →1` .
0 0
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Thus

lim W(x, t, r)51`
ixi→1`

This proves the global convexity of W(x, t, r).
Now we turn to prove the second part of the thesis. Properties (1) and (3) of the

function w imply that for all x and for all t > 1 we have:

w(t[ f(x)2 f(x*)1r])<B (5)1

w(t[ f(x)2 f(x*)1r])>w([ f(x)2 f(x*)]) (6)1 1

and then

1 2]S DW(x, t, r)<h ix 2 x i B (7)02

1 2]S DW(x, t, r)>h ix 2 x i w([ f(x)2 f(x*)]) (8)0 12

Now, by using (7) and (8), we have:

1 1n 2 2˜ ˜] ]H S D S D J+ (x, t, r)# x [R :h ix 2 x i w( f(x)2 f(x*))<h ix 2 x i B0 0 1 02 2
(9)

which completes the proof by setting

1 1n 2 2˜] ]H S D S D JD5 x [R :h ix 2 x i w( f(x)2 f(x*))<h ix 2 x i B . h0 1 02 2

Now we study the nature of the point x .0

THEOREM 2. If f(x )> f(x*), then the prefixed point x is an isolated local0 1 0

minimizer of W(x, t, r).

Proof. The continuity of f(x) on D, implies the existence of a neighbourhood of x ,0

called N(x ), such that f(x)> f(x*) holds for x [N(x ). Therefore we have in this0 1 0

neighbourhood

1 2]S DW(x , t, r)5 0,h ix 2 x i w(t[ f(x)2 f(x*)1r])5W(x, t, r)0 0 12

This shows that x is an isolated local minimizer of W(x, t, r), which is what we0

wanted to prove. h

ˆThe next result characterizes the stationary points x of W(x, t, r). First we split the
˜level set + (x, t, r) in two subsets:0

n ˜S 5 hx [R : f(x)> f(x*), x [+ (x, t, r)j (10)1 1 0

n ˜S 5 hx [R : f(x), f(x*), x [+ (x, t, r)j (11)2 1 0
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¯ ¯THEOREM 3. (a) There exists a t > 1 such that for all t > t we have that the
function W(x, t, r) has no stationary points in the region S except the prefixed point1

x .0

(b) If x* is not a global minimum of f(x) and r satisfies (3) then the function1

W(x, t, r) has a minimizer in the region S .2

Proof. (a) Recalling the expression (2) of the gradient of W(x, t, r) we have that a
ˆstationary point x of W(x, t, r) must satisfy

1 2ˆ ] ˆ ˆS Dix 2 x ih9 ix 2 x i w(t[ f(x )2 f(x*)1r])0 0 12 (12)
1 2] ˆ ˆ ˆS D5th ix 2 x i i=f(x )iw9(t[ f(x )2 f(x*)1r]) .0 12

ˆ ˆSuppose x [ S . This implies that f(x )> f(x*).1 1

Since x is an isolated local mimimizer of W(x, t, r), it is possible to construct a0

ˆneighbourhood B(x , e ) with no stationary point of W(x, t, r), so we have ix 20 0

x i.e . Moreover the properties of w(t) and h(t) imply that:0 0

1 2˜ ˆ ] ˆ ˆS De aw(tr)< ix 2 x ih9 ix 2 x i w(t[ f(x )2 f(x*)1r]) (13)0 0 0 12

and

1 12 2] ˆ ˆ ˆ ]S D S Dth ix 2 x i i=f(x )iw9(t[ f(x )2 f(x*)1r])<th D9 Lw9(tr) (14)0 12 2

where D95max ix 2 x i and L 5max i=f(x)i.x[D 0 x[D

Thus if (12) holds and x [ S we should have:1

1 2˜ ]S De aw(tr)<th D9 Lw9(tr) . (15)0 2

Now, recalling again properties (2) and (3) of w(t), we have

˜ ˜lim e aw(tr)5e aB0 0
t→1`

1 2]S Dtrh D9 Lw9(tr)1 22] ]]]]]]S Dlim th D9 Lw9(tr)5 lim 5 0
t→1` 2 t→1` r

¯ ¯This means we can always find a value t such that for all t > t we have:

B
˜ ˜ ]e aw(tr).e a0 0 2

1 B2 ˜] ]S Dth D9 Lw9(tr),e a02 2

and these relations contradict (15). This shows that every stationary point different
from x cannot belong to S .0 1

˜(b) Since W(x, t, r) is continuous function in the compact level set + (x, t, r), it0

¯has a global minimum x. Let x* be a global minimum of f(x). By using (3), we have
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f(x*), f(x*)2r. Moreover Observation 1 implies w(t[ f(x*)2 f(x*)1r]), 0.1 1

From the definition of W(x, t, r) we have that W(x*, t, r), 0, and hence

¯W(x, t, r)<W(x*, t, r), 0 .

¯ ¯This implies that w(t[ f(x )2 f(x*)1r]), 0 which implies in turn that f(x ), f(x*),1 1

¯that is x [ S . h2

Theorems 1 and 3 show that for suitable values of t an unconstrained minimization
ˆ ˆof the function W(x, t, r) is able to locate either a point x such that f(x ), f(x*) or1

the prefixed point x . This feature can be useful in the context of global optimization0

methods to escape from the local minima. However, an efficient use of the filled
function W(x, t, r) (or the use of filled functions proposed in Ge and Qin (1990))
requires to deal with the following two difficulties:

• a good choice of the parameter t ;
• the presence of the local minimum point x .0

¯In fact too small values of the parameter t could not satisfy the requirement t > t

(see Theorem 3), while too large values of the parameter t could make the filled
function difficult to numerically minimize. Therefore updating procedures should be
used to identify suitable values for the parameter t.

As regard the presence of the local minimum x , it is desirable to avoid the local0

minimizations of W(x, t, r) be entrapped by this point. This could be done by using
‘proper’ procedures for changing the starting point of the local minimization or for
changing the point x .0

The definition of these techniques for W(x, t, r) could not be easy, in fact it
requires to be able to foresee the combined effects of simultaneously changing t and
x . For this reason in the next subsection we introduce a new class of filled functions0

21
]with an additive structure, which keeps apart the two terms, h( ix 2 x i ) and02

w(t[ f(x)2 f(x*)1r]), and hence keeps apart the effects of changing t and x .1 0

2.2. A NEW FILLED FUNCTION WITH ADDITIVE STRUCTURE

We introduce the following class of filled functions:

1 2]S DV(x, t, r)5h ix 2 x i 1w(t[ f(x)2 f(x*)1r])0 12

with gradient given by:

1 2]S D=V(x, t, r)5 (x 2 x )h9 ix 2 x i 1t=f(x)w9(t[ f(x)2 f(x*)1r]) (16)0 0 12
n˜For every x [R we denote the level set of V(x, t, r) by

n˜ ˜+ (x, t, r)5 hx [R : V(x, t, r)<V(x, t, r)j .9



226 S. LUCIDI AND V. PICCIALLI

To state the properties of V(x, t, r) we require that the following assumptions hold.

ASSUMPTIONS 2.2
(i) h(t) satisfies properties (1) and (2);

(ii) w(t) satisfies properties (1), (2), (3b), (4) and (5);
(iii) r satisfies:

0,r , f(x*)2 f(x*) (17)1

where x* is a global minimizer of f(x).
As for W(x, t, r), we can prove that V(x, t, r) is globally convex and that the sets

˜+ (x, t, r), for all t . 0 and for all r . 0, are contained in a compact set D.9

THEOREM 4. For every t, r . 0 the function V(x, t, r) is globally convex and
˜hence the level set + (x, t, r) is compact9

Furthermore there exists a compact set D such that

˜+ (x, t, r)#D (18)9

for all t . 0 and r . 0.

Proof. First we consider the global convexity of the function. When ixi→1` we
have f(x) →1`, thus f(x)2 f(x*)1r →1`. It follows from property (3) of w(t)1

that

lim w(t[ f(x)2 f(x*)1r])5B .1
ixi→1`

Moreover we have from the properties of h(t)
t t

˜ ˜h(t)5E h9(s) ds >E a ds 5 at →1` when t →1`
0 0

so

1 2]S Dlim h ix 2 x i 51`02ixi→1`

This proves the global convexity of V(x, t, r).
Now we turn to prove the second part of the thesis. Properties (1) and (3) of the

function w imply that w(t)<B for all t and, hence, we have:

1 2]S DV(x, t, r)5h ix 2 x i 1w(t[ f(x)2 f(x*)1r])0 12
1 2]S D<h ix 2 x i 1B . (19)02

Now, by using (19), we have:

1n 2˜ ]H S D J+ (x, t, r)# x [R :h ix 2 x i 1w(t[ f(x)2 f(x*)1r])<d (20)9 0 12
21 ˜]where d 5h( ix 2 x i )1B.02
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˜By the definition of + (x, t, r) we have:9

˜+ (x, t, r)#D <D (21)9 1 2

where

1n 2]H S DD 5 x [R :h ix 2 x i 1w(t[ f(x)2 f(x*)1r])<d ,1 0 12

Jw(t[ f(x)2 f(x*)1r]), 01

and

1n 2]H S DD 5 x [R :h ix 2 x i 1w(t[ f(x)2 f(x*)1r])<d ,2 0 12

Jw(t[ f(x)2 f(x*)1r])> 0 .1

Recalling observation 1 we note that w(t), 0 implies t , 0 and then

n
D # hx [R : f(x)< f(x*)j (22)1 1

nwhere hx [R : f(x)< f(x*)2rj is compact for the assumption of global convexity1

of f(x).
As regards D we note2

1n 2]H S D JD # x [R :h ix 2 x i <d (23)2 02

where the set on the right side of the inclusion is clearly compact.
Finally the (18) follows from (20), (21), (22), (23) by setting

1n n 2]H S D JD5 hx [R : f(x)< f(x*)j< x [R :h ix 2 x i <d . h1 02

ˆAlso for this class of filled functions we can characterize the stationary points x of
˜V(x, t, r). To do this we split the level set + (x, t, r) in two subsets:9

n ˜S 5 hx [R : f(x)> f(x*), x [+ (x, t, r)j (24)1 1 9

n ˜S 5 hx [R : f(x), f(x*), x [+ (x, t, r)j . (25)2 1 9

¯ ¯ ¯THEOREM 5. There exist values t . 0 and e . 0 such that for all t > t and for all
¯e [ (0, e ] we have:

(a) the function V(x, t, r) has no stationary points in the region S , except in the1

neighbourhood B(x , e) of x , where an isolated local minimum point can exist;0 0

(b) if x* is not a global minimum of f(x) and r satisfies (17), then all the global1

minimum points of the function V(x, t, r) are in the region S .2
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Proof. (a) Recalling the expression (16) of the gradient of V(x, t, r) we note that a
stationary point x [ S of V(x, t, r) must satisfyt 1

1 2]S Dix 2 x ih9 ix 2 x i 5ti=f(x )iw9(t[ f(x )2 f(x*)1r]) . (26)t 0 t 0 t t 12

Since x [ S , property (2) of w(t) yields:t 1

ti=f(x )iw9(t[ f(x )2 f(x*)1r])<tLw9(tr) (27)t t 1

where L 5max i=f(x)i.x[D

Property (2) of h(t) gives:

1 2 ˜]S Dix 2 x ih9 ix 2 x i > ix 2 x ia . (28)t 0 t 0 t 02

By (26), (27) and (28) we obtain

tLw9(tr)
]]]ix 2 x i< . (29)t 0 ã

ˆ ˆProperty (2) of w(t) implies that we can find a t such that, for all t > t,
x [B(x , e).t 0

2We recall the expression of = V(x, t, r):

1 12 2 2 T] ]S D S D= V(x, t, r)5h9 ix 2 x i I 1h0 ix 2 x i (x 2 x )(x 2 x )0 0 0 02 2
2

1tw9(t[ f(x)2 f(x*)1r])= f(x) (30)1

2 T
1t w0(t[ f(x)2 f(x*)1r])=f(x)f(x) .1

2By using the structure of = V(x, t, r) and recalling property (2) of h(t) and
˜ ˆ ¯properties (2) and (5) of w(t), we can observe that there exist values t > t and e . 0

˜ ¯such that for all t > t, for all e [ (0, e ] and for all x [B(x , e) the hessian matrix0
2

= V(x, t, r) is positive definite. Therefore we have that x is an isolated localt

minimum point and that there are no other stationary points in B(x , e).0

(b) Let x* be a global minimum of f(x). By using (17), we have f(x*), f(x*)21

r. Moreover Observation 1 implies w(t[ f(x*)2 f(x*)1r]), 0. It follows from1

¯ ˆproperty (4) of w(t)(w(t)) →2` when t →2`) that there is a value t > t such that,
¯for all t > t, V(x*, t, r), 0. Since V(x, t, r) is a continuous function in the compact

˜ ¯level set + (x, t, r), it has a global minimum x, which clearly satisfies9

¯V(x, t, r)<V(x*, t, r), 0 .

¯for all t > t.
¯ ¯This implies that w(t[ f(x )2 f(x*)1r]), 0, which implies in turn that f(x ),1

¯f(x*), that is x [ S . h1 2

We note that the function V(x, t, r) has theoretical properties similar to the ones of
W(x, t, r). In fact, for suitable values of t, an unconstrained mimimization of the
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ˆ ˆfunction V(x, t, r) is able to locate either a point x such that f(x ), f(x*) or a point x1 t

sufficiently close to x . Thus the only difference is that we do not exactly know0

where x is located. Anyway, by the proof of the previous theorem, we can note that,t

for increasing values of t, x tends to x .t 0

Finally we can also observe that Theorem 4 and Theorem 5 still hold by setting
r 5 0, if the function w(t) satisfies the additional assumption w9(0)5 0.

3. A class of filled functions for box constrained optimization problems

In this section we consider the following optimization problem:

min f(x) (31)
x[^

where ^ 5 hxul < x < u , i 5 1, . . . , nj with l , u [R.i i i i i

A stationary point for Problem (31) is a point x*[^ which satisfies the
following necessary conditions:

≠f
]> 0 if x*5 li i≠xi

≠f
]< 0 if x*5 ui i≠xi

≠f
]5 0 if l , x*, u .i i i≠xi

The box constrained minimization problems are more representative than uncon-
strained ones because they can represent a wider class of real applications. For this
reason the aim of the next two subsections is to extend our approach to this class of
problems.

The presence of the box constraints makes harder the local minimization process,
but, roughly speaking, is useful to define the properties of the filled functions. In
fact, since the feasible set ^ is compact, we do not need to ensure any compactness
property of the level sets of the filled functions.

3.1. A FIRST FILLED FUNCTION FOR BOX CONSTRAINED OPTIMIZATION PROBLEMS

We want to show that the function W(x, t, r) preserves its properties in the case of
problems with box constraints. We suppose the point x strictly interior to ^, that is0

l , x , u , i 5 1, . . . , n.i 0i i

We suppose that Assumptions 2.1 hold.
The next theorem extends the analysis of Theorem 3 to the constrained stationary

points of Problem (31). For this aim we split the feasible set ^ in two subsets:
nS 5 hx [R : f(x)> f(x*), x [^ j (33)1 1

nS 5 hx [R : f(x), f(x*), x [^ j (34)2 1
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¯ ¯THEOREM 6. (a) There exists a t > 1 such that for all t > t we have that the
function W(x, t, r) has no stationary points in the region S except the prefixed point1

x .0

(b) If x* is not a global minimum of f(x) and r satisfies (3), then the function1

W(x, t, r) has a minimizer in the region S .2

ˆProof. (a) Let x be a stationary point of the function W(x, t, r). It must satisfy
conditions (32). We have two cases:

ˆ ˆ(1) The point x is strictly interior to the feasible set, namely l , x , u for alli i i

ˆi 5 1, . . . , n. Therefore x is an unconstrained stationary point and then Theorem 3
ˆ ˆensures that exists a value t > 1 such that for all t > t the function W(x, t, r) has no

unconstrained stationary points in the region S except the prefixed point x .1 0

ˆ ˆ ˆ(2) There exists at least an index j such that either x 5 l or x 5 u . If x 5 lj j j j j j

condition (32) implies

ˆ≠W(x, t, r)
]]]]> 0

≠xj

that is

1 2] ˆ ˆS D(l 2 x )h9 ix 2 x i w(t[ f(x )2 f(x*)1r])j 0j 0 12
ˆ≠f(x )1 2] ˆ ]] ˆS D1th ix 2 x i w9(t[ f(x )2 f(x*)1r])> 0 . (35)0 12 ≠xj

ˆ ˆ ˆWe suppose x [ S , then t[ f(x )2 f(x*)1r]. 0. This implies w(t[ f(x )2 f(x*)11 1 1
21 ˆ]r]). 0. Furthermore recalling that l 2 x , 0 and that h9( ix 2 x i ). 0, we havej 0j 02

1 2] ˆ ˆS D0< (x 2 l )h9 ix 2 x i w(t[ f(x )2 f(x*)1r])0j j 0 12
ˆ≠f(x )1 2] ˆ ]] ˆS D<th ix 2 x i w9(t[ f(x )2 f(x*)1r]) . (36)0 12 ≠xj

By using property (2) of h(t) and property (1) w(t), since t > 1 we have:

1 2 ˜] ˆ ˆS Dh9 ix 2 x i w(t[ f(x )2 f(x*)1tr])> aw(r). 0 . (37)0 12

Moreover property (2) of h(t), property (2) of w(t) and t > 1 imply

ˆ≠f(x )1 12 2] ˆ ]] ˆ ]S D S Dth ix 2 x i w9(t[ f(x )2 f(x*)1r])<th il 2 ui Lw9(tr)0 12 ≠x 2j

(38)

where L 5max i=f(x)i.x[^

Thus if (36) holds, we should have:

1 2˜ ]S D(x 2 l )aw(r)<th il 2 ui Lw9(tr) . (39)0j j 2
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Now, recalling again property (2) of w(t) we have

trw9(tr)
]]]lim tw9(tr)5 lim 5 0 . (40)

t→1` t→1` r

˜ ˜ˆThis means we can always find a value t > t such that for all t > t we have:

1 2 ˜]S Dth il 2 ui Lw9(tr), (x 2 l )aw(r)0 j2

and this relation contradicts (39) and hence (35).
ˆInstead if x 5 u condition (32) impliesj j

ˆ≠W(x, t, r)
]]]]< 0

≠xj

that is

1 2] ˆ ˆS D(u 2 x )h9 ix 2 x i w(t[ f(x )2 f(x*)1r])j 0j 0 12
ˆ≠f(x )1 2] ˆ ]] ˆS D1th ix 2 x i w9(t[ f(x )2 f(x*)1r])< 0 . (41)0 12 ≠xj

By using again (37) and (38) we can write

1 2˜ ]S D(u 2 x )aw(r)<th il 2 ui Lw9(tr) . (42)j 0j 2

˜¯ ¯Recalling (40) we have that we can always find a value t > t such that for all t > t

we have:

1 2 ˜]S Dth il 2 ui Lw9(tr), (u 2 x )aw(r)j 0j2

and this relation contradicts (42) and hence (41).
¯ ¯Finally we can conclude that there exists a value t > 1 such that for all t > t the

function W(x, t, r) has no stationary points in the region S except the prefixed point1

x .0

(b) The proof of this point is the same of point (b) of Theorem 3. h

3.2. A FILLED FUNCTION WITH ADDITIVE STRUCTURE FOR BOX CONSTRAINED

OPTIMIZATION PROBLEMS

In this subsection we study the properties of the function V(x, t, r) in the case of
problems with box constraints. We suppose that the point x is inner to ^, that is0

l , x , u , i 5 1, . . . , n.i 0i i

ASSUMPTION 3.1. (i) h(t) satisfies properties (1) and (2);
(ii) w(t) satisfies properties (1), (2), (3b), (5) and

21
](4b) uw(t)u>uh( iu 2 li ), with u . 1 when t →2` ;2
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(iii) r satisfies:

0,r , f(x*)2 f(x*) (43)1

where x* is a global minimizer of f(x).

We note that by scaling properly the function h(t), all the samples of function w(t)
reported in Section 2 satisfy properties (1), (2), (3b), (4b).

We use again the sets S and S defined by (33) and (34).1 2

¯ ¯ ¯THEOREM 7. There exist values t . 0 and e . 0 such that for all t > t and for all
¯e [ (0, e ] we have:

(a) the function V(x, t, r) has no stationary points in the region S , except in the1

neighbourhood B(x , e) of x , where an isolated local minimum point can exist;0 0

(b) if x* is not a global minimun of f(x) and r satisfies (43), then all the global1

minimum points of the function V(x, t, r) are in the region S .2

ˆProof. (a) Let x be a stationary point of the function V(x, t, r). It must satisfy
conditons (32). We have two cases:

ˆ ˆ(1) the point x is an unconstrained stationary point (l , x , u for all i 5 1, . . . , n),i i i

ˆ ¯then Theorem 5 implies that there exist values t . 0 and e . 0 such that for all
ˆ ¯t > t and for all e [ (0, e ] the function V(x, t, r) has no unconstrained

stationary points in the region S , except in the neighbourhood B(x , e) of x .1 0 0

ˆ(2) The point x is a constrained stationary point, namely there exists at least an
ˆ ˆindex j such that either x 5 l or x 5 u .j j j j

ˆIf x 5 l condition (32) impliesj j

ˆ≠V(x, t, r)
]]]> 0

≠xj

that is

ˆ≠f(x )1 2] ˆ ˆ ]]S D(l 2 x )h9 ix 2 x i 1tw9(t[ f(x )2 f *)1r]) > 0 . (44)j 0j 0 12 ≠xj

21 ˆ]Recalling that l 2 x , 0 and that h9( ix 2 x i ). 0 we havej 0j 02

1 2] ˆS D(l 2 x )h9 ix 2 x i , 0 . (45)j 0j 02

ˆ ˆWe suppose x [ S , then t[ f(x )2 f(x*)1r]. 0. Inequality (44) can be rewritten1 1

as:

ˆ≠f(x )1 2] ˆ ]]S D(x 2 l )h9 ix 2 x i <tw9(t[ f(x )2 f(x*)1r]) . (46)0j j 0 t 12 ≠xj

By using property (2) of h(t) and properties of w(t), we have:
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˜(x 2 l )a <tw9(tr)L (47)0j j

˜ ˆwhere L 5max i=f(x)i. Recalling property (2) of w(t) there exists a value t > tx[^

˜such that for all t > t we have

˜(x 2 l )a .tw9(tr)L (48)0j j

which contradicts (47) and then (46).
ˆInstead if x 5 u condition (32) impliesj j

ˆ≠V(x, t, r)
]]]< 0

≠xj

that is

ˆ≠f(x )1 2] ˆ ]]S D(u 2 x )h9 ix 2 x i 1tw9(t[ f(x )2 f *)1r]) < 0 . (49)j 0j 0 t 12 ≠xj

By using property (2) of h(t) and properties of w(t), we have:

˜(u 2 x )a <tw9(tr)L (50)j 0j

˜where L 5max i=f(x)i. Recalling property (2) of w(t) there exists a value t9> tx[^

such that for all t >t9 we have

˜(u 2 x )a .tw9(tr)L (51)j 0j

which contradicts (50) and then (49).
Finally we can conclude that there exists a value t9> 1 such that for all t >t9

the function V(x, t, r) has no stationary points in the region S , except in the1

neighbourhood B(x , e) of x , where an isolated local minimum point can exist.0 0

(b) Let x* be a global minimum of f(x). By using (3), we have f(x*), f(x*)2r.1

Moreover Observation 1 implies w(t[ f(x*)2 f(x*)1r]), 0. We consider the1

expression of V(x*, t, r):

1 2]S DV(x*, t, r)5h ix*2 x i 1w(t[ f(x*)2 f(x*)1r]) .0 12

For the properties of h(t) we have

1 12 2] ]S D S Dh ix*2 x i <h iu 2 li .02 2

21
]It follows from property (4b) of w(t)(uw(t)u>uh( iu 2 li ), with u . 1 when2

t →2`) that exists a value t*. 0 such that for all t >t* we have V(x*, t, r), 0.
Since V(x, t, r) is a continuous function in the compact set ^, it has a global

¯minimum x, which clearly satisfies
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¯V(x, t, r)<V(x*, t, r), 0 .

for all t >t*.
¯ ¯This implies that w(t[ f(x )2 f(x*)1r]), 0, which implies in turn that f(x ),1

¯ ¯f(x*), that is x [ S . In conclusion the thesis follows by setting t 5maxht9, t*j. h1 2

4. Preliminary numerical results

Although the focus of our paper is more theoretical than computational, we have
performed some tests to have an initial feeling of the practical interest of the filled
functions proposed. We have restricted our attention to the filled function V(x, t, r)
in the case of box constrained minimization problems.

In particular we have set h(t)5g t and w(t)5g arctan (t), where g and g are1 2 1 2

scaling factors and hence we have used the following filled function:

1 2]V(x, t, r)5g ix 2 x i 1g arctan(t[ f(x)2 f(x*)1r]) .1 0 2 12

We have considered this filled function for its additive structure, which, as we have
indicated in Section 2, should allow us to manage more easily the possible
parameters of the filled function. The choice of testing on box constrained problems
follows from the fact that for this class of problems we can relax the hypothesis on
w(t), in particular we can replace the property (4) with the property (4b). This
allows us to use the function w(t)5g arctan(t), better conditioned than the ones2

3which include exponential terms and less flat than w(t)5minht, 0j . As regards our
6 23 4implementation we have set g 5 1, g 5 10 , r 5 10 and t 5 10 . The point x is1 2 0

initially chosen at random at the interior of the feasible set, and then it is updated
whenever the local minimizaiton of the filled function gives a point x wheret

f(x )> f(x*) and V(x , t, r),V(x , t, r). In this case x becomes the new x . Wet 1 t 0 t 0

have stopped our algorithm whenever the local minimization of the filled function
24gives x such that ix 2 x i, 10 for 5n times running (where n is the dimensiont t 0

of the test problem). The rational behind this stopping criterion is the property that if
the current local minimum x* is the global minimum of f(x), x is the only global1 t

minimum of the filled function and it is very close to x .0

Local minimizations have been performed by using the derivative free algorithm
proposed in Lucidi and Sciandrone (1999) and the starting points of the minimiza-
tions have been generated at random in the feasible set.

We have used our code for solving 11 global optimization test problems, taken
from literature (see, for example, Lucidi and Piccioni, 1989; and Brachetti et al.,
1997)), with n ranging from 2 to 10. Each test problem has been solved 10 times
with 10 different initial x . The obtained results are reported in Table 1, where0

• Prob. is the name of the test function
• n is the dimension of the test function
• nf is the mean number of function evaluations needed to get the global minimum
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Table 1. Numerical results obtained by using the filled function V(x, t, r)

Prob. n nf(nf*) nm nmF(nmF*) f* Fail

SHC 2 156.6(850.8) 1.2 0.2(10.2) 21.03 0
5n 2 282.3(1101) 2.1 1.7(12.5) 0.54D2 15 0
5n 4 427(3903) 1.4 0.9(22.4) 0.11D2 13 0
5n 6 430.3(8347) 1.2 0.3(31.9) 0.12D2 13 0
5n 8 1093(15010) 1.7 1.3(45.2) 0.17D2 13 0
5n 10 973.1(22760) 1.3 0.9(55.6) 0.65D2 14 0
10n 2 141.7(966.5) 1.1 0.2(10.7) 0.11D2 11 0
10n 4 654.4(4045) 1.5 2.5(25.9) 0.17D2 12 0
10n 6 1249(9071) 1.8 2.7(36.8) 0.7D2 12 0
10n 8 1539(15440) 1.5 2.8(46.8) 0.41D2 12 0
10n 10 2191(24310) 1.5 3.3(61.7) 0.77D2 13 0
15n 2 257.6(1043) 1.8 1.1(11.2) 0.33D2 13 0
15n 4 411.4(3846) 1.4 0.9(21.7) 0.74D2 14 0
15n 6 1049(9084) 1.7 2.2(34.2) 0.1D2 12 0
15n 8 1021(15880) 1.6 1.5(44.4) 0.37D2 13 0
15n 10 2262(26160) 2 3.1(58.1) 0.16D2 14 0
Sh(5) 4 1189(4225) 2.4 7.8(31.89) 210.15 1
Sh(7) 4 787.2(3815) 2.7 3.1(25.8) 2 10.4 0
Sh(10) 4 603.7(3706) 2.2 2(25.2) 210.54 3
Hart 3 784.7(2323) 1.8 1.1(28.3) 23.86 0
Hart 6 518.6(7797) 2.3 0.9(82.3) 23,32 0
GandP 2 307.9(1225) 1.8 0.6(12.9) 3.00 0
CosMix 2 241.8(857.9) 1.6 1.5(11.5) 20.2 0
CosMix 4 928.7(3255) 2.2 4.9(24.9) 20.40 0
Qua 2 196.7(986.6) 1.5 0.6(10.8) 20.35 0
Shu 2 345.8(1158) 2.111 2.6(14.6) 2186.7 1
Gri 2 890.4(1823) 3.5 7.3(17.3) 0.22D2 15 1

• nf* is the mean number of function evaluations needed to satisfy the stopping
criterion

• nm is the mean number of local minimizaitons of the objective function f(x)
• nmF is the mean number of local minimizations of the filled function needed to

get the global minimum
• nmF* is the mean number of local minimizations of the filled function needed to

satisfy the stopping criterion
• f* is the obtained optimal function value
• fail. is the number of times where the stopping criterion is satisfied without having

located the global minimum.

All the mean values have been computed without considering the failures.
Results reported seem to show the practibility of the approach, in fact the

implemented algorithm has been able almost always to find the global minimum
within an acceptable number of functions evaluation. Better results can be obtained
by defining more sophisticated algorithm, which should include updating rules for
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the parameters t, r and x , more efficient stopping criteria and tuning processes for0

the scaling factors.

Acknowledgements

We wish to thank two anonymous Referees for their careful reading of the paper,
and for their constructive comments, that improved the paper.

References

Ge, R. 1990, A Filled Function Method for Finding a Global Minimizer of a Function of Several
Variables, Mathematical Programming 46, 191–204.

Ge R.P. and Qin, Y.F. 1987, A Class of Filled Functions for Finding Global Minimizers of a
Function of Several Variables, Journal of Optimization Theory and Applications, 54, 241–252.

Ge, R. and Qin Y.F. 1990, The Globally convexized Filled Functions for Global Optimization,
Applied Mathematics and Computation 35, 131–158.

Ge, R. 1987, The Theory of Filled Function Method for Finding Global Minimizers of Nonlinearly
Constrained Minimization Problems, Journal of Computational Mathematics, 5, 1–10.

Liu, X. 2001, Finding Global Minima with a Computable Filled Function, Journal of Global
Optimization 19, 151–161.

Lucidi S. and Piccioni, M. 1989, Random Tunneling by Means of Acceptance-Rejection Sampling
for Global Optimization, Journal of Optimization Theory and Applications, 62, 255–277.

Brachetti, P., De Felice Ciccoli, M., Di Pillo, G. and Lucidi, S. 1997, A New Version of the Price’s
Algorithm for Global Optimization, Journal of Global Optimization, 10, 165–184.

Lucidi, S. and Sciandrone, M. 1999, A Derivative Free Algorithm for Bound Constrained
Optimization, Tech. Rep. IASI-CNR, n. 498 (to appear in Computational Optimization and
Applications).


